Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

نویسندگان

  • Yang Yang
  • Haibo Yu
  • Darrin York
  • Qiang Cui
  • Marcus Elstner
چکیده

The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach

Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...

متن کامل

Theoretical Study of stereoelectronic effects of Boron Nitride Nanotubes in interaction with 7-hydroxy phenothiyazine 3-one sulphure dye by electron density functional theory

In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...

متن کامل

Theoretical Study of stereoelectronic effects of Boron Nitride Nanotubes in interaction with 7-hydroxy phenothiyazine 3-one sulphure dye by electron density functional theory

In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...

متن کامل

Hydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs

The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...

متن کامل

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 111 42  شماره 

صفحات  -

تاریخ انتشار 2007